基于卷积神经网络的船舶复合接头焊接损伤识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Welding Damage Identification of Ship Composite Joint Based on Convolutional Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种基于卷积神经网络(Convolutional Neural Network,CNN)的船舶复合接头焊接损伤识别方法。采用Ansys软件对焊接过程进行模拟,考虑5种不同损伤位置和损伤程度的模拟工况,采集不同工况条件下复合接头的应变响应数据。构建一维CNN,将数据分为训练集和测试集放入神经网络中进行训练和测试,验证该方法对复合接头焊接过程中不同损伤位置和损伤程度进行识别的适用性。结果表明,该方法在结构焊接损伤检测方面具有良好的检测性能。

    Abstract:

    A welding damage identification method of ship composite joint based on Convolutional Neural Network (CNN) is proposed. The welding process is simulated with the Ansys software, 5 simulated operation conditions with different damage positions and damage degrees are considered, and the strain response data of composite joints under different operation conditions are collected. A one-dimensional CNN is constructed, and the data are divided into the training set and test set and are put into the neural network for training and testing, so as to verify the applicability of the method to identify different damage positions and damage degrees during the composite joint welding. The results show that the method is of good testing performance in the structural welding damage testing.

    参考文献
    相似文献
    引证文献
引用本文

范同轩,林光裕,黄健.基于卷积神经网络的船舶复合接头焊接损伤识别[J].造船技术,2024,(03):64-70

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-25
  • 出版日期: