深度迁移学习下的船舶焊接表面缺陷智能检测系统
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Intelligent Detection System of Ship Welding Surface Defect Under Deep Transfer Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提升船舶焊接表面缺陷检测的智能化水平、更好地适应智能制造需求,设计船舶焊接表面缺陷智能检测系统。通过采集船舶焊接表面图像,对图像进行预处理,结合深度迁移学习方法,根据缺陷特征对船舶焊接表面缺陷进行分析,建立检测模型,对图像进行缺陷目标检测,从而得到一种船舶焊接表面缺陷智能检测的高效手段,为船舶制造智能化水平和先进性的提升提供驱动力。

    Abstract:

    In order to improve the intelligentization level of ship welding surface defect detection and better meet the intelligent manufacturing needs, the intelligent detection system of ship welding surface defect is designed. Through gathering the ship welding surface images and preprocessing the images, combined with the deep transfer learning method, the ship welding surface defect is analyzed according to the defect characteristics, and the detection model is established to conduct the defect target detection for the images, so as to get an efficient means of intelligent detection of ship welding surface defect, which provides driving force for the improvement of shipbuilding intelligentization level and advanced nature.

    参考文献
    相似文献
    引证文献
引用本文

胡晓轩,甄希金,朱琦,王浩.深度迁移学习下的船舶焊接表面缺陷智能检测系统[J].造船技术,2021,(03):84-88

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-06-18
  • 出版日期: