基于RNN-LSTM的船舶运动轨迹预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Ship Motion Trajectory Prediction Based on RNN-LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对船舶轨迹预测精确性与实时性的需求,从数据层面探究影响船舶航行轨迹的特征,通过相关性分析确定网络的输入,提出结合循环神经网络-长短期记忆(Recurrent Neural Networks - Long Short Term Memory,RNN-LSTM)的船舶航行轨迹预测模型。通过船舶Z形试验相关数据与实船实际航行数据对网络模型进行训练,并对未来船舶航行轨迹进行预测。对未来轨迹的预测值与实际值进行对比。结果表明,模型预测误差小,验证该方案在船舶轨迹预测中的实用性和有效性。

    Abstract:

    In terms of the accuracy and real-time requirements of ship trajectory prediction, the characteristics influencing the ship navigation trajectory are explored at the data level, the network input is determined through the correlation analysis, and a ship navigation trajectory prediction model combining the Recurrent Neural Networks - Long Short Term Memory (RNN-LSTM) is proposed. The network model is trained through the relevant data of ship Z-shape test and actual ship navigation data, and the prediction of future ship navigation trajectory is made. The prediction value of future trajectory is compared with the actual value. The results show that the error of model prediction is small, which verifies the practicability and effectiveness of the scheme in the ship trajectory prediction.

    参考文献
    相似文献
    引证文献
引用本文

吴鹏程,罗亮.基于RNN-LSTM的船舶运动轨迹预测[J].造船技术,2021,(03):11-16

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-06-18
  • 出版日期: