基于改进粒子群算法的船舶曲面分段车间调度
DOI:
作者:
作者单位:

江苏科技大学 船舶与海洋工程学院

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


Research on Ship Curved Block Workshop Scheduling Based on Improved Particle Swarm Optimization Algorithm
Author:
Affiliation:

School of Naval Architecture Ocean Engineering,Jiangsu University of Science and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本研究针对船舶建造过程中曲面分段车间的调度优化问题,提出一种融合模拟退火机制的改进粒子群算法(HPSO-SA)。传统粒子群算法(PSO)在复杂调度场景中易陷入局部最优且收敛效率不足,本研究通过动态惯性权重调整策略与模拟退火的邻域扰动机制,增强算法的全局搜索能力与鲁棒性。同时,构建考虑工人疲劳累积效应的多约束调度模型,以最小化最大完工时间为优化目标,实现资源分配与工序排序的协同优化。通过某船厂实际生产数据的算例分析表明,缩短了生产的最大完工时间,并提升了收敛速度,验证了其在复杂制造场景下的工程适用性。本研究为船舶分段车间的高效调度提供了理论支持与可落地的技术方案。

    Abstract:

    This study addresses the scheduling optimization problem in curved block workshops during shipbuilding processes by proposing an improved Particle Swarm Optimization (PSO) algorithm integrated with a simulated annealing mechanism (HPSO-SA). Traditional PSO algorithms are prone to falling into local optima and exhibit insufficient convergence efficiency in complex scheduling scenarios. To enhance global search capability and robustness, this study introduces a dynamic inertia weight adjustment strategy and a neighborhood perturbation mechanism derived from simulated annealing. Additionally, a multi-constrained scheduling model is constructed, incorporating the cumulative fatigue effects of workers, with the optimization objective of minimizing the maximum completion time to achieve collaborative optimization of resource allocation and process sequencing. Case analysis using actual production data from a shipyard demonstrates that the proposed method reduces the maximum completion time and improves convergence

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-27
  • 最后修改日期:2025-03-10
  • 录用日期:2025-03-12
  • 在线发布日期:
  • 出版日期: