基于深度学习的模拟试箱场景点云分割研究
DOI:
作者:
作者单位:

1.江苏科技大学;2.舟山长宏国际船舶修造有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on Point Cloud Segmentation for Simulated Container Stowage Scenarios Based on Deep Learning
Author:
Affiliation:

1.Jiangsu University of Science and Technology;2.Zhoushan Changhong International Shipyard Co., Ltd

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    三维扫描仪获得的集装箱船货舱点云数据,具有精度高、数据量大的特点。针对现有的深度学习网络处理大场景点云数据困难的问题,采用RandLA-Net的编码结构作为主干网络,实现对大场景货舱点云数据的构件有效识别,在分割任务中采用原始RandLA-Net作为主干网络。特征聚合模块聚合单一的问题,在识别任务中采用基于双边偏移的特征聚合模块。构建集装箱船货舱点云数据集,并使用该数据集训练本文网络。实验结果显示,模型在货舱点云数据集上的mAcc达到78.37%,实验有效地分割出导轨点云,表明本方法在大规模点云分割任务中具有较好的分割性能。

    Abstract:

    The point cloud data of the container ship cargo hold obtained by the 3D scanner is characterized by high accuracy and large data volume. To address the challenges of processing large-scale point cloud data with existing deep learning networks, this study employs the encoding structure of RandLA-Net as the backbone network to achieve effective component recognition in large-scale cargo hold point clouds. In the segmentation task, the original RandLA-Net is utilized as the backbone network. To address the limitations of single-feature aggregation in the feature aggregation module, a bilaterally offset-based feature aggregation module is introduced for the recognition task. A point cloud dataset of the container ship cargo hold was constructed and used to train the proposed network. Experimental results show that the model achieved an mAcc of 78.37% on the cargo hold point cloud dataset, effectively segmenting the rail track point cloud, demonstrating that the proposed method exhibits strong segmentation performance in large-scale point cloud segmentation tasks.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-20
  • 最后修改日期:2025-03-05
  • 录用日期:2025-03-07
  • 在线发布日期:
  • 出版日期: