基于人工神经网络的船舶建造成本概算方法研究
DOI:
作者:
作者单位:

江苏科技大学 船舶与海洋工程学院

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


Research on Shipbuilding Cost Estimation Method Based on Artificial Neural Networks
Author:
Affiliation:

School of Naval Architecture Ocean Engineering,Jiangsu University of Science and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    人工神经网络作为一种能够处理复杂非线性关系的强大工具,具有更高的预测精度和灵活性。为提高船厂成本概算效率,解决原先成本概算方法耗时长、人力资源消耗大的问题,利用人工神经网络进行成本概算。首先,通过对船舶工程项目进行船舶成本分解,确定船舶成本科目,同时,筛选出影响成本概算的特征因素,以特征因素作为输入项,以成本科目作为输出项,建立BP神经网络模型,阐述其传递函数,隐含层节点个数、阈值确定方法,为避免陷入局部最优解,进一步选择GA-BP神经网络进行优化,阐述优化原理。搜集了某船厂船舶建造项目的原始数据,利用MATLAB软件开展归一化和网络训练,得到了稳定的神经网络。对GA-BP神经网络和GA-BP神经网络的预测值进行误差分析,BP神经网络的精确率为97%,GA-BP神经网络的精确率为99%,为目前船舶建造项目成本概算提供了新思路。

    Abstract:

    Artificial neural networks, as a powerful tool capable of handling complex nonlinear relationships, offer higher predictive accuracy and flexibility. To improve the efficiency of cost estimation in shipyards and address the issues of lengthy processing time and high human resource consumption associated with traditional methods, artificial neural networks are employed for cost estimation. First, by performing a cost breakdown for shipbuilding projects, the shipbuilding cost items are determined. At the same time, key factors influencing cost estimation are identified. These factors are used as input variables, while the cost items are treated as output variables, to establish a BP neural network model. The transfer function, the number of hidden layer nodes, and the method for determining the thresholds are explained. To avoid getting trapped in local optima, a GA-BP neural network is further selected for optimization, and the optimization principle is described. Original data from a shipbuilding project at a certain shipyard is collected, and normalization and network training are carried out using MATLAB software, resulting in a stable neural network. Error analysis is conducted on the prediction results of the BP and GA-BP neural networks. The BP neural network achieves an accuracy rate of 97%, while the GA-BP neural network achieves 99%, providing new insights for current shipbuilding project cost estimation.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-08
  • 最后修改日期:2025-02-28
  • 录用日期:2025-03-04
  • 在线发布日期:
  • 出版日期: