基于神经网络的船舶建造工时定额研究
DOI:
作者:
作者单位:

1.江苏科技大学;2.江苏现代造船技术有限公司;3.江苏科技大学 船舶与海洋工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on Quota Working Hours in Shipbuilding Based on Neural Networks
Author:
Affiliation:

1.School of Naval Architecture and Ocean Engineering;2.School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了研究船舶建造中物量构成复杂的工序所需的定额工时,首先分析了某船厂在任务包分解与管理基础上实施的定额工时管理方法及其基于经验公式计算定额工时存在的问题;其次通过物料清单实现了将零件与具体物量和生产信息进行关联;然后筛选物料清单中同定额工时相关的参数,并建立基于神经网络的电舾件定额工时模型;最终以实际统计的电舾件制作物料清单为例进行验证。结果表明该模型准确性较好,对于定额工时的估算具有一定的参考价值。

    Abstract:

    To study the quota working hours required for the complex processes involved in shipbuilding, an analysis was first conducted on the quota working hours management methods implemented by a certain shipyard based on task package decomposition and management, as well as the issues related to calculating quota hours based on an empirical formula. Next, a Bill of Materials was used to associate components with specific quantities and production information. Then, parameters relevant to the quota working hours were selected from the Bill of Materials, and a neural network-based quota working hours model for electrical outfitting components was established. Finally, the actual Bill of Materials for the production of electrical outfitting components was input into the model for quota working hours estimation validation. The results indicate that the model has good accuracy and provides certain reference value for the estimation of quota working hours.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-22
  • 最后修改日期:2025-02-14
  • 录用日期:2025-02-19
  • 在线发布日期:
  • 出版日期: