基于多特征融合修船结算编码智能匹配方法
DOI:
作者:
作者单位:

1.江苏科技大学;2.江苏现代造船技术有限公司;3.舟山市卓林船舶设计有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:

舟山科技计划项目《数字化修船智慧解决方案研发》(2023C13009)


Intelligent Matching Method for Ship Repair Settlement Coding Based on Multi-Feature Fusion
Author:
Affiliation:

1.Jiangsu University of Science and Technology;2.Jiangsu Modern Shipbuilding Technology Co., Ltd.;3.Zhoushan Zhuolin Ship Design Co., Ltd.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统的修船结算过程通常涉及繁琐的手动操作,包括需翻阅价格本,手动录入基价、系数等,还结合计算器、Excel等工具进行计算。为了提升效率,一些企业建立了结算系统和电子价格库,将结算流程简化为结算人员根据工程内容手动选择相应的结算编码,系统随后依据物量进行自动计算,但人工手动匹配结算编码这一步骤易出错且耗时长,直接影响了结算的效率。为解决该问题,本文提出了一种多特征融合修船结算编码智能匹配方法,采用BERT将工程内容文本表示为词向量,通过BiLSTM提取文本的上下文特征,CNN提取文本的局部特征,对输出采用平均池化,不同来源的特征融合为一个特征向量,最后通过输出层得到对应的结算编码。结果表示多特征融合模型的整体准确率为85.48%。

    Abstract:

    The traditional ship repair settlement process often involves tedious manual operations, including referring to price books, manually entering base prices, coefficients, etc., and using tools like calculators and Excel for calculations. To improve efficiency, some companies have established settlement systems and electronic price libraries, simplifying the settlement process to where the settlement personnel manually select the appropriate settlement codes based on the project content, and the system then automatically calculates based on the quantities. However, the step of manually matching settlement codes is prone to errors and time-consuming, directly affecting the efficiency of the settlement. To address this issue, this paper proposes an intelligent matching method for ship repair settlement codes based on the fusion of multiple features. It uses BERT to represent the project content text as word vectors, extracts contextual features of the text through BiLSTM, and uses CNN to extract local features of the text. The outputs are subjected to average pooling, and features from different sources are fused into a single feature vector, which is then used to obtain the corresponding settlement code through the output layer. The results show that the overall accuracy of the multi-feature fusion model is 85.48%.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-20
  • 最后修改日期:2024-12-20
  • 录用日期:2025-01-08
  • 在线发布日期:
  • 出版日期: