基于CA-DenseNet的 邮轮薄板焊缝缺陷识别模型
DOI:
作者:
作者单位:

江苏科技大学

作者简介:

通讯作者:

中图分类号:

基金项目:

江苏省研究生科研与实践创新计划项目(SJCX23_2212)


A Model for Identifying Weld Defects in Thin Plate Welds of Cruise Ships Based on CA DenseNet
Author:
Affiliation:

School of Naval Architecture or Ocean Engineering,Jiang Su University of Science and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在邮轮建造中,大量使用了厚度为4-8mm的薄板。这些薄板焊缝由于熔深、熔宽相对较小,母材与焊缝区域差异性小,焊接表面缺陷较难判别。为此,提出了一种以深度学习DenseNet网络为核心的焊缝缺陷识别算法。为了更加准确的定位焊缝位置,将注意力机制模块CA(Coordinate Attention)融入到DenseNet网络,并将网络中ReLu激活函数替换为更具稳定性的ReLu6,利用贝叶斯优化算法对CA-DenseNet网络的超参数组合进行优化及选取。通过在焊接车间利用相机采集邮轮薄板焊缝RGB图片自建立薄板焊缝缺陷数据集,以焊缝缺陷类型分类为毛刺、凹陷、气孔、表面裂纹、无缺陷五个类别,经过数据增强处理共24207张焊缝图片。通过实验证明此模型对邮轮薄板焊缝缺陷识别有优异表现。在测试集中取得准确率97.96%,相较于原DenseNet模型准确率提升8.93%。

    Abstract:

    In response to the problems of relatively small weld penetration depth and width, small differences in base metal and weld area, and difficulty in identifying surface defects in cruise thin plate welds, a deep learning DenseNet network is integrated with an attention mechanism CA module (Coordinate attention) to improve the accuracy of the model in extracting weld features and more accurately identify weld positions.In order to improve the stability of the model, the ReLu activation function in the original DenseNet model was replaced with ReLu6, and a Bayesian optimization algorithm was used to select hyperparameters for the improved DenseNet model. Training was conducted on a self established dataset of ship thin plate welding seam defects, and experimental results showed that the improved DenseNet model has excellent performance in detecting ship thin plate welding seam defects. In the test set, it achieved an accuracy of 96.03% and an average accuracy of 97.96%, which is 8.93% higher than the original DenseNet model recognition accuracy.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-22
  • 最后修改日期:2024-03-20
  • 录用日期:2024-03-20
  • 在线发布日期:
  • 出版日期: