基于LSTM的散货船材料成本滚动预测研究
DOI:
作者:
作者单位:

江苏科技大学 经济管理学院

作者简介:

通讯作者:

中图分类号:

F275.3

基金项目:


LSTM-based Rolling Prediction of Material Costs for Bulk Carriers
Author:
Affiliation:

School of Economic and Management,Jiangsu University of Science and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    船舶制造周期长、材料成本占比大,易受大宗商品价格指数、汇率等多个因素的影响,造成实际完工成本与报价估算存在较大误差。文章利用灰色关联度识别了材料成本的影响因素,用长短期记忆神经网络模型(LSTM)构建了船舶制造材料成本滚动预测模型,并利用某船厂53艘64000吨散货船63个月的材料成本数据及对应的影响因素数据进行实验分析,结果表明预测数据与实际发生数误差在可接受范围内,证明了所选择方法及构建模型的有效性,该研究结果对制造过程的成本实时预测及控制具有现实意义。

    Abstract:

    The shipbuilding process involves a long cycle and a significant proportion of material costs, which can be influenced by various factors such as commodity price index and exchange rate. As a result, there can be substantial discrepancies between the actual completion cost and the initial quotation estimation.To address this issue, the article employs a gray correlation degree to identify the factors that influence material costs. Furthermore, the article develops a rolling prediction model for shipbuilding material costs using a long and short-term memory neural network model (LSTM). To test the model"s effectiveness, the study analyzes 63 months of material cost data from a shipyard, consisting of 53 64,000-ton bulk carriers, and corresponding influencing factors data. The results demonstrate that the predicted data"s error rate is within an acceptable range, thereby validating the chosen method and constructed model. The research findings are practically significant for the real-time cost prediction and control of the manufacturing process.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-30
  • 最后修改日期:2023-03-30
  • 录用日期:2023-04-19
  • 在线发布日期:
  • 出版日期: