交互性水域机器人的避障路径规划算法
DOI:
作者:
作者单位:

江苏科技大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Obstacle avoidance path planning algorithm for interactive water robot
Author:
Affiliation:

Jiangsu University of Science and Technolog

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了使水域垃圾收集机器人进行垃圾收集时能够成功捕获水中浮动垃圾,并顺利规避水域障碍物,提出一种基于采样的RRT*算法和速度障碍模型相结合的成功规避障碍并进行路径规划的算法。通过双目摄像头基于视差定位法获取水域中动态障碍物的位置坐标,利用机器人搭载的感应元件获取其自身与障碍物的相对方位角,再通过速度障碍法计算成功避开障碍物可进行的移动角度调整范围,经过对RRT*算法中随机采样过程的优化,得到改进的障碍规避路径规划算法,考虑实际应用场景,引入抗饱和PID控制法使航向控制器的控制效果更为精准有效,同时,由于实景测试时这里的避障路径规划算法存在鲁棒性,基于TOA定位估计算法进行仿真分析。仿真实验结果表明,该路径规划算法比基本RRT算法以及改进前的RRT*算法路径规划效果更优,可靠性更好,能够在较短时间内避障并得到较优移动路径。在实景测试时基于TOA的CHAN算法更加符合定位估计需求,且水上机器人本体上感应装置的噪声测算宜在10m以内。

    Abstract:

    In order to make the water garbage collection robot successfully capture the floating garbage in the water and smoothly avoid the obstacles in the water area, an algorithm based on the sampling-based RRT* algorithm and the speed obstacle model is proposed to successfully avoid obstacles and perform path planning. The position coordinates of the dynamic obstacles in the water are obtained through the binocular camera based on the parallax positioning method, the relative azimuth angle between itself and the obstacle is obtained by using the sensing element carried by the robot, and the movement that can successfully avoid the obstacle is calculated by the speed obstacle method. For the angle adjustment range, after optimizing the random sampling process in the RRT* algorithm, an improved obstacle avoidance path planning algorithm is obtained. Considering the actual application scenario, the anti-saturation PID control method is introduced to make the control effect of the heading controller more accurate and effective. At the same time, Due to the robustness of the obstacle avoidance path planning algorithm in the real-world test, the simulation analysis is carried out based on the TOA positioning estimation algorithm. The simulation results show that the path planning algorithm has better path planning effect and better reliability than the basic RRT algorithm and the RRT* algorithm before improvement, and can avoid obstacles in a short time and obtain a better moving path. In the real-world test, the TOA-based CHAN algorithm is more in line with the needs of positioning estimation, and the noise measurement of the sensing device on the water robot body should be within 10m.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-08-09
  • 最后修改日期:2022-09-06
  • 录用日期:2022-09-09
  • 在线发布日期:
  • 出版日期: